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By analyzing the behavior of one-dimensional perturbations imposed
on a normal flame in gases we have established an intensive sta-
bility of combustion entirely attributable to the stabilization effect
of compressibility.

The hydrodynamic instability of a normal gas flame
to relatively small two-dimensional perturbations
distorting the discontinuity front of the flame was first
noted by L. D. Landau [1] with the assumption that the
medium was incompressible. Subsequently, the various
aspects of this problem were dealt with in similar
manner by other authors (for example, [2-5]). How-
ever, the investigation of flame stability with respect
to one-dimensional perturbations which do not alter
its geometric shape cannot be carried out within the
framework of an incompressible medium, since the
absence of deformation of the medium totally excludes
the possibility of any of the perturbations having any
effect.

Later on we will therefore treatthe one-dimensional
stability of combustion with consideration of the medi~
um's compressibility. The existence of only a single
characteristic linear dimension—the width L of the
flame zone—requires the mandatory consideration of
the internal structure of the front, in contrast to the
two-dimensional case in which it would be possible
to neglect L, as in [1], as small in comparison with
the perturbation wavelength A along the flame.

Let a steady two-dimensional flame be enclosed
between the planes x = —L and x = 0, The gas flowing
in the positive direction of the x-axis will then pass
successively through three regions occupied by the
initial combustible mixture "1" (x = —L), the combus-
tion process "3" (—L = x = 0), and the product of
combustion "2" (x = 0). The gasdynamic parameters
P, P, vV, ¢, S, %, and Cp are marked with numerical
subscripts for these regions, choosing the constant.
parameters of region "3" as the average quantities
through the width. If the flame is displaced &= Bexpwt
as a result of any random internal factors, it will
serve as the source of a perturbed state of the medium
in the form of acoustic (P]!k, V]!k) and entropy (Si)
waves which are described, in analogy with [6], by the
following solutions of linearized gasdynamic equations
(the Euler equation, the equation of continuity, and
the entropy equation):
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Since the only cause of the perturbations lies within
the combustion process, in the regions of the original
mixture (§ = 1) and in the regions of the products of
combustion (j = 2) we should concern ourselves only
with the acoustic waves radiated by the flame upstream
{k = 1) and downsiream ( k = 2); however, the entropy
wave transported by the flow itself will not be present
in the initial mixture (§ = 1).

The reverse effect of the resulting perturbations
on the process of combustion will make itself felt
through the interaction of the acoustic wave (pJ!, vJE)
and the internal siructure of the flame region j = 3,
and it will be described by the fieldback equation which
we derived [4] with an accuracy to O(M?):
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We can bring the perturbed states of regions "1"
and "3" into contact at the leading edge x = —L of the
flame (in analogy with [5]) by means of the laws of
conservation of mass, momentum, and energy on
transition through the infinitely small circumference
of this edge entirely containing the perturbed position

of the flame. Linearization of these laws for x = ~L
will yield:
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We can bring the perturbed states of regions ¥1" and
"2" into contact by means of the laws of continuity for
flows of mass, momentum, and energy on transition
through the flame, and in our case, in analogy with
[6], these laws have the form
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Thus, conditions (2)—(4) for the constants B, Ay,
Ayy, Agq, A3y, D3, and Dy, which play a role in € and
in solutions (1), lead to a system with the following
characteristic determinant to find the eigenvalue of w:
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At the limit, on changing to an incompressible medium,
when M = 0, the perturbations of p' and v' should no
longer be functions of x, because the continuity equa~
tion takes the form 8v5/8x = 0, In other words, ac-
cording to (1), vy =~ 0 as M — 0. Therefore, zM;/q — 0
as Mz — 0 and, expanding exp vk L into a power series,
we can present Eq. (5)—accurate to zM%—in the form

(a——l) M3 M3
Hence it follows that Rez < 0 (Rew < 0), because the
M numbers for slow combustion are excessively small.
In other words, the flame in a gas mixture is stable
with respect to one-dimensional perturbations, i.e.,
the compressibility exerts an extremely intensive
(the modulus of Rew is large) stabilizing effect, lead-
ing to Rew < 0 (as opposed to the indeterminate con- .
clusion of w = 0 within the framework of the hypothesié
of incompressibility {1]).

This result is in agreement with the theory of un-
stable combustion developed by Landau [1] on the
basis of an incompressible medium with respect to
two-dimensional perturbations. Indeed, it follows
from this theory that w ~ 1/A, or the intensity of
increasing perturbations with time diminishes as their
wavelengths A increase, so that when A = = we should
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expect a transition to stability. It is precisely this
fact that has been observed in this study in which we
considered the effect of compressibility. Thus, the
wavelength of the unstable perturbations, more exactly
A/L, should be bounded from above by an extremely
large quantity. ‘

On the other hand, viscous dissipation, which is
always present under actual conditions, will stabilize
the most intense shortwave perturbations, since these
are associated with the greatest gradients across a
flow. The relative wavelength A/L of unstable per-
turbations must therefore also be bounded from below.
Hence, in the experiments we should also expect the
appearance of unstable perturbations with a specific
value for A,/L. This statement is in complete agree-
ment with the data known from the experiments in
[7,8]. The calculation [5] which we carried out on
viscous stabilization shows a large magnitude for
2,/ L. '

NOTATION

p is the pressure; v is the velocity; p is the density;
S is the entropy; x is the heat-capacity ratio; ¢ is the
speed of sound; Cp is the heat capacity; w is the eigen-
value; L is the width of the flame front; A is the wave-
length of the flame disturbance for the two-dimen-
sional case; € is the displacement of the flame front,
prime means disturbance, symbols 1, 2, 3 correspond
to initial mixture, the products of combustion, and the
flame regions; M is the Mach number.
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